The COP/DET/FUS proteins-regulators of eukaryotic growth and development.

نویسندگان

  • C Schwechheimer
  • X W Deng
چکیده

Eleven recessive mutant loci define the class of cop / det / fus mutants of Arabidopsis. The cop / det / fus mutants mimic the phenotype of light-grown seedlings when grown in the dark. At least four cop / det / fus mutants carry mutations in subunits of the COP9 signalosome, a multiprotein complex paralogous to the 'lid' subcomplex of the 26S proteasome. COP1, another COP/DET/FUS protein, is itself not a subunit of the COP9 signalosome. In the dark, COP1 accumulates in the nucleus where it is required for the degradation of the HY5 protein, a positive regulator of photomorphogenesis. In the light, COP1 is excluded from the nucleus and the constitutively nuclear HY5 protein can accumulate. Nuclear accumulation of COP1 and degradation of HY5 are impaired in the cop / det / fus mutants that carry mutations in subunits of the COP9 signalosome. Although the cellular function of the COP/DET/FUS proteins is not yet well understood, taken together the current findings suggest that the COP/DET/FUS proteins repress photomorphogenesis in the dark by mediating specific protein degradation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of the mutational effects of the COP/DET/FUS loci on genome expression profiles reveals their overlapping yet not identical roles in regulating Arabidopsis seedling development.

Microarray gene expression profiling was used to examine the role of pleiotropic COP/DET/FUS loci as well as other partially photomorphogenic loci during Arabidopsis seedling development and genome expression regulation. Four types of lethal, pleiotropic cop/det/fus mutants exhibit qualitatively similar gene expression profiles, yet each has specific differences. Mutations in COP1 and DET1 show...

متن کامل

Arabidopsis COP10 is a ubiquitin-conjugating enzyme variant that acts together with COP1 and the COP9 signalosome in repressing photomorphogenesis.

A group of evolutionarily conserved pleiotropic COP/DET/FUS proteins was initially defined by their ability to repress photomorphogenesis in Arabidopsis. It was proposed that this regulation be mediated by targeting degradation of key cellular regulators that promote photomorphogenesis. Among them, COP1 and the COP9 signalosome have been hypothesized to fulfill the roles as an ubiquitin ligase ...

متن کامل

Beyond repression of photomorphogenesis: role switching of COP/DET/FUS in light signaling.

Light is a pivotal environmental stimulus that promotes plant photomorphogenesis. Substantial progress has been achieved in defining the central repressors of photomorphogenesis, the CONSTITUTIVE PHOTOMORPHOGENIC/DE-ETIOLATED/FUSCA (COP/DET/FUS) loci, in the past 20 years. COP/DET/FUS proteins are well-conserved, and regulate a variety of biological processes in plants and animals. The fact tha...

متن کامل

Loss of the CONSTITUTIVE PHOTOMORPHOGENIC9 signalosome subunit 5 is sufficient to cause the cop/det/fus mutant phenotype in Arabidopsis.

The COP9 signalosome (CSN) was originally identified based on the constitutively photomorphogenic/de-etiolated/fusca (cop/det/fus) mutants from Arabidopsis thaliana. CSN is evolutionary conserved, and its subunit 5 (CSN5) mediates the deconjugation of NEDD8 from the cullin subunit of E3 ubiquitin ligases (deneddylation). Here, we report on Arabidopsis mutants deficient in CSN5 function. We show...

متن کامل

Evidence for FUS6 as a component of the nuclear-localized COP9 complex in Arabidopsis.

The pleiotropic CONSTITUTIVE PHOTOMORPHOGENIC (COP), DEETIOLATED (DET), and FUSCA (FUS) loci are essential regulatory genes involved in the light control of seedling developmental patterns in Arabidopsis. Although COP1, DET1, COP9, and FUS6 (also called COP11) have been cloned, their biochemical activities and interactions remain elusive. We have recently suggested that multiple pleiotropic COP...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Seminars in cell & developmental biology

دوره 11 6  شماره 

صفحات  -

تاریخ انتشار 2000